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Abstract
We study analytically the effect of amplitude noise on the quantum resonances
of an atom optics realization of the δ-kicked rotor. Noise is shown to add a time
growth to the ‘deterministic’ energy and to induce a time increasing spreading
in the momentum distribution; exact results are given for both effects. The
ballistic peaks characteristic of the noiseless distribution for particular initial
conditions broaden and eventually vanish, whereas the associated quadratic
growth of energy persists; at large times, the survival probability decays as
t−1. Moreover, the nonexponential ‘localization’ linked to different initial
conditions is gradually destroyed. Features specific to Gaussian noise, white
and coloured, are analysed. The feasibility of experimental tests of these effects
is discussed.

PACS numbers: 05.45.Mt, 42.50.Vk, 32.80.Lg

1. Introduction

Recent research in atom optics has allowed experimental study of a variety of fundamental
effects. Especially interesting is the realization of the δ-kicked rotor [1–3], a paradigm in
classical and quantum chaos [4–6], achieved with a two-level atom interacting with a pulsed
standing light wave. Predictions on aspects of this system relevant to issues such as quantum–
classical correspondence or anomalous diffusion have been tested. In particular, dynamical
localization, i.e. the quantum suppression of chaos reflected in an exponential localization of
the probability distribution, has been verified [2, 3]. Moreover, decoherence effects [7–10]
have been observed: noise has been shown to induce the destruction of localization and the
partial recovery of the classical behaviour [11–13].

In the present paper, we focus on another important aspect of the dynamics of the δ-kicked
rotor, namely, the quantum resonances (QR) [5, 14, 15]. These are intrinsically quantum
features which result from well-chosen values of the kicking period and are characterized
by ballistic motion (BM), i.e. quadratic time increase in the energy, for particular initial
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conditions. The role of the initial preparation of the system in the occurrence of this effect has
been clarified by recent experiments; remarkably, the momentum distribution has been shown
to present nonexponential ‘localization’ instead of ballistic growth for quite general initial
conditions [3, 14]. We aim at discussing the robustness of these features against fluctuations
in the stochasticity parameter of the rotor. Apart from its intrinsic fundamental interest, the
problem has practical implications: these fluctuations, which will be termed amplitude noise
[11, 12], correspond to systematic noise sources in the realization of the model; in particular,
to random drifts in the intensity of the standing wave. Furthermore, since different types
of noise can be incorporated into the experimental set-up, the system provides a scenario
for analysing the effect of a controllable decohering mechanism on specifically quantum
features. Indeed, the interest of studying the relevance of the noise statistical characteristics
to the coherent evolution of the system has been emphasized in recent work [11, 12]. In
contrast with the complexity of the studies of dynamical localization, we present an exact
analytical treatment, feasible at QR due to the simplicity of the evolution between kicks.
Our exact results for the energy and the momentum distribution give insight into nontrivial
aspects of the decoherence phenomenology such as nonexponential decay [16], persistence
of quantum characteristics in the open system, or effects specific to different random
drivings.

We focus on the realization of the δ-kicked rotor reported in [2, 3]. In the absence of
noise, the Hamiltonian, in the dimensionless notation of [3], reads

H(φ, ρ, τ ) = ρ2

2
+K cosφ

∞∑
n=−∞

δ(τ − n) (1)

where the conjugate variables φ and ρ obey [φ, ρ] = ik̄, k̄ being a scaled Planck constant.
It is assumed that the pulses can be approximated as δ-kicks with an effective stochasticity
parameter K. In this description, K and k̄ completely determine the quantum dynamics. We
concentrate on the QR defined by k̄/2 = q2π , where q is an integer; as the classical dynamics
is solely determined by K, the features resulting from this condition have specifically quantum
nature. In this regime, an initial state ψ0(φ) = exp[i(n0 + ν0)φ], where n0 is an integer and
ν0 ∈ [−1/2, 1/2), evolves after N kicks into [10]

ψN(φ) = exp

[
i(n0 + ν0)(φ −Nk̄ν0)− i

K

k̄

N−1∑
l=0

cos[φ − (N − l)k̄ν0]

]
. (2)

Note that states with ν0 �= 0 are considered in our study since they are relevant to the atomic
realization of the δ-kicked rotor. The mean energy is obtained as 〈E(N)〉 ≡ 〈ρ2/2〉 =
k̄

2

2 (n0 + ν0)
2 + K̄2

4

( sinNβ0

sinβ0

)2
, with β0 ≡ k̄ν0/2; additionally, the probability of having a

momentum ρ = (n + ν0)k̄ is J 2
n−n0

(
K̄

k̄

sinNβ0

sin β0

)
, where Jm(x) are the Bessel functions [17].

For ν0 = 0,−1/2, the energy increases quadratically with N. Moreover, since J 2
±n(x) peaks

when x is close to n, two ballistic peaks appear at the edges of the momentum distribution
[14]; the sample is, therefore, accelerated in a highly nonuniform way. For ν0 �= 0,−1/2, the
energy ‘oscillates’; the distribution shows partial or complete revivals. BM is still observed
at small times in the limit ν0 → 0,−1/2; outside this limit, quasilocalization sets in [3]. As
opposed to the exponential character of dynamical localization, the ‘static’ distribution at QR
has a nonexponential profile. Our objective is to investigate how this behaviour is affected
by amplitude noise. First, a plane-wave initial state, ψ0(φ) = exp[i(n0 + ν0)φ], will be
assumed; despite its simplicity, its evolution shows the key features of the problem. Next, the
generalization to realistic states which correspond to experimental realizations of the system
will be presented.
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2. The effect of noise on energy

Amplitude noise is introduced through K = K̄ + δK , where K̄ is the mean value of the
stochasticity parameter and δK corresponds to a zero-mean random variable. Following
standard methodology [18, 19], we first obtain the state after N kicks for each stochastic
realization, which reads [3]

ψN(φ) = exp

[
i(n0 + ν0)(φ −Nk̄ν0)− i

k̄

N−1∑
l=0

(K̄ + δKl) cos[φ − (N − l)k̄ν0]

]
(3)

where δKl denotes the value taken by δK at the lth kick. The mean energy 〈E(N)〉 is readily
calculated; the subsequent average over fluctuations (〈· · ·〉f ) yields

〈〈E(N)〉〉f = k̄
2
(n0 + ν0)

2

2
+

(
K̄

2

sinNβ0

sinβ0

)2

+ E(f ) (4)

where, added to the initial value k̄2
(n0 + ν0)

2/2, two differently rooted contributions are
apparent. The second term, which gives the energy enhancement corresponding to a noiseless
system with stochasticity parameter K̄ , implies the persistence of some deterministic features
in the random dynamics, in particular, of the BM linked to states with ν0 = 0,−1/2. We stress
that BM is rooted in the nondispersive evolution between kicks allowed by the QR condition;
importantly, this nondispersive character is preserved by amplitude noise. The third term,
defined as

E(f ) ≡
〈〈

1

2

[
N−1∑
l=0

δKl sin[φ − (N − l)k̄ν0

]2〉〉
f

(5)

reflects a noise-induced growth of the energy which modifies the deterministic dependence;
the corresponding change in the momentum distribution will be shown to gradually broaden
the ballistic peaks observed for ν0 = 0,−1/2 and the nonexponentially ‘localized’ distribution
detected outside the limit ν0 → 0,−1/2. No restrictions on the statistics of δK have been
introduced so far. Let us now analyse features specific to different stochastic characteristics.
For Gaussian white noise, namely, for noise with 〈δK(τ)〉f = 0, 〈δK(τ)δK(τ ′)〉f =
Var(δK)δ(τ − τ ′) and higher order moments given by the standard factorization form (see,
for instance, [20]), we find

E(f ) = 1

2π

∫
dφ

N−1∑
l=0

〈
δK2

l

〉
f

sin2[φ − (N − l)k̄ν0] = 1

4
Var(δK)N (6)

which shows that a purely diffusive spread is added to the deterministic energy. As only up
to two-time correlations intervene in the averaging, a linear dependence on N and Var(δK)
can also be predicted for non-Gaussian white noise. Of interest for the general discussion
on the role of fluctuations in the quantum–classical correspondence (see [3] and references
therein) is that, in the QR regime considered in our system, amplitude noise does not induce
the emergence of classical behaviour: the deterministic contribution, which has a specifically
quantum character, and the noisy term are simultaneously present at any time and irrespective
of the noise intensity. At this point, it is worth recalling that the limit k̄ → 0 is incompatible
with the QR condition.

Let us now analyse the effect of coloured noise. For exponentially correlated fluctuations,
i.e. for 〈δK(τ)δK(τ ′)〉 = Var(δK) exp(−|τ − τ ′|/τc) [20], our previous derivation is
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Figure 1. The contribution of noise to the mean energy, E(f ), versus N, for different initial states.
The dashed lines correspond to coloured noise with τc = 50; the solid line corresponds to white
noise (equation (6)). Var(δK) = 1.

generalized to obtain

E(f ) = Var(δK)

4

N−1∑
l=0

N−1∑
m=0

exp(−|m− l|/τc) cos(l −m)2β0 = Var(δK)

4

sinh γc
cosh γc − cos 2β0

×
[
N +

(cosh γc cos 2β0 − 1)(e−N/τc cos 2Nβ0 − 1)− e−N/τc sin 2Nβ0 sin 2β0 sinh γc
sinh γc(cosh γc − cos 2β0)

]
(7)

where γc ≡ 1/τc. Two significant differences with the white noise case are evident: the
nonlinearity of the time increase and the dependence on the initial state (see figure 1); indeed,
maxima of E(f ) are reached at ν0 = 0,−1/2. Furthermore, as illustrated in figure 2, E(f )

presents a nontrivial dependence on the correlation time. The origin of these features is
clarified by the analysis of the following limiting cases:

(i) For N 	 τc, which corresponds to the initial behaviour for long correlation times,
one finds E(f ) = Var(δK)

4

( sinNβ0

sin β0

)2
, which has the same functional form as the deterministic

contribution. In this regime, as the noise correlations have hardly decayed, the system
behaves in a purely deterministic way with total stochasticity parameter given by K =
[K̄2 + Var(δK)]1/2.

(ii) The asymptotic behaviour is trivially characterized: forN 
 1, τc, a linear spreading
emerges as the noise-induced term reads

E(f ) = 1

4
Var(δK)

sinh γc
cosh γc − cos 2β0

N. (8)

Hence, in this limit, the effect of coloured noise parallels that of an effective white noise. A
simplified description of this behaviour is given by a coarse-grained picture of the dynamics
with time scale defined by the number M of correlated kicks (N 
 M). Since the correlations
are lost after M kicks, coloured noise is described in this approach as an effective white noise
with intensity depending on the dynamics inside the coarse-graining period.
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Figure 2. E(f ) versus τc for different initial states. N = 100 and Var(δK) = 1.

Important features apparent in the above expression give additional insight into this
regime. Traces of deterministic behaviour can still be observed in the dependence of the
effective white-noise variance on β0. Indeed, qualitative changes in the dependence of E(f )

on noise colour are observed as the initial condition is varied; e.g., for ν0 = 0,−1/2, we find
E(f ) = 1

4 Var(δK) coth(γc/2)N , which reflects a colour-induced enhancement of the response;
significantly, these initial conditions correspond to ballistic growth in the deterministic
system. In contrast, for ν0 = 1/4, which corresponds to deterministic localization, we
obtain E(f ) = 1

4 Var(δK) tanh(γc)N , where the opposite behaviour is apparent. As expected,
the traces of the initial condition in E(f ) vanish as the white-noise limit is approached; for
τc → 0, we consistently recover E(f ) = 1

4 Var(δK)N . This distinctive effect of coloured
noise can be understood from an analysis of equation (7): the dependence of E(f ) on β0, i.e.
on the initial condition, becomes apparent as soon as there is a correlation between the values
taken by δK at two consecutive kicks.

From these results, it follows that coloured-noise effects in our system can be intuitively
depicted as intermediate between the purely deterministic behaviour observed in the initial
transient and the white-noise effects emerging in the asymptotic regime. Actually, traces of
characteristics of the two limits can be identified in features specific to the finite bandwidth of
the fluctuations.

3. The momentum distribution

Let us complete our picture of the dynamics with the analysis of the momentum distribution.
By expanding equation (3) in products of Bessel functions and applying the ‘summation
theorems’ [21], the coefficients of the wavefunction in the momentum representation, a(N)n ,
are obtained as functions with the same form as their deterministic counterparts and stochastic
arguments: a(N)n ∝ Jn−n0(ηN), where, for generic noise, ηN is defined through
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Figure 3. Evolution of the momentum distribution for (a) ν0 = 0 and K = 1, in the noiseless
case; (b) ν0 = 0 and K̄ = 1, for white noise; (c) ν0 = 0.04 and K = 5, in the noiseless case; and
(d) ν0 = 0.04 and K̄ = 5, for white noise. Var(δK) = 9.

ηN =

z2

N+
N−1∑
l=0

N−1∑
j=0

δKl

k̄

δKj

k̄
cos(l − j)2β0 + 2zN

N−1∑
l=0

δKl

k̄
cos(N − 1 − 2l)β0




1/2

(9)

with zN = K̄

k̄

sinNβ0

sin β0
. Hence, the probability of having a momentum ρ = (n+ ν0)k̄ is〈∣∣a(N)n

∣∣2〉
f

= 〈
J 2
n−n0

(ηN)
〉
f

. Note that, as opposed to the mean energy, the momentum
distribution can be affected by noise correlations of order higher than two. Equation (9)
reflects that the number of noisy terms which are added to give ηN increases with N. Therefore,
we can predict an increasing dispersion of ηN and, as a result, a noise induced spreading of
the distribution growing with N and Var(δK); indeed, the attenuation of the deterministic
features due to the averaging in

〈
J 2
n−n0

(ηN)
〉
f

, in particular, the gradual destruction of the
localization, can be anticipated. Let us put this discussion on a more quantitative ground.

(a) For ν0 = 0, one has ηN = zN +
∑N−1

l=0
δKl
k̄

, which, for Gaussian white noise, is
characterized by 〈ηN(τ)〉 = zN and 〈ηN(τ)ηN(τ ′)〉 = N Var(δK)k̄−2δ(τ−τ ′); these properties
correspond also to ηN for ν0 = −1/2. In these cases, the averages are given by

〈∣∣a(N)n

∣∣2〉
f

= 1√
π
2 Var(δK)N

∫ ∞

−∞
J 2
n−n0

(ηN) exp

[
− (ηN − zN)

2

1
2 Var(δK)N

]
dηN. (10)

The results for ν0 = 0, for the deterministic system and for its stochastic parallel, are presented
in figures 3(a) and (b), respectively. There it is shown how noise broadens the ballistic peaks;
although BM persists at any time (see equation (4)), the peak structure in the distribution is
hardly noticeable at large N. An understanding of these findings is given by the following
arguments. First, one should recall that the ballistic peaks are rooted in the maxima reached
by the functions J 2

±n(x) at x close to n. In the deterministic system, for ν0 = 0, the argument
zN increases linearly with N and, therefore, the two maxima move to higher (negative and
positive) values of the momentum; moreover, because of the properties of the Bessel functions,
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Figure 4. The coefficient of the momentum distribution at a ballistic peak 〈|a(N)n |2〉f (N = 94,
n = 6) versus the variance, in the case of white noise.

an increasing number of intermediate peaks appear as zN grows. Second, in the noisy
system, the argument ηN is a stochastic variable with mean value zN and a variance which
is proportional to both the noise intensity and the number of kicks. The implications for the
ballistic peaks are clear: the decreasing probability 1

/√
π
2 Var(δK)N of having ηN = zN

implies a smaller contribution of the maximum J 2
n (zN) to the average in equation (10);

moreover, as values of ηN larger and smaller than zN become increasingly probable, the
statistical weights of smaller values of J 2

n (ηN) increase. As a consequence, the coefficients〈∣∣a(N)n

∣∣2〉
f

associated with the ballistic peaks decrease. Additionally, the dispersion of ηN
allows that the higher order Bessel functions that correspond to coefficients beyond the peak,
which take almost zero values at zN , now reach values sufficiently important to make larger
momenta become apparent in the distribution.

Further insight is obtained by focusing separately on two important points of the above
discussion: the dependence of the spreading on the noise intensity and the time evolution
of the coefficients. Figure 4 depicts, at fixed N, the noise-induced decay of the coefficient〈∣∣a(N)n

∣∣2〉
f

corresponding to a ballistic peak. The dependence of the peak height on the noise

variance apparent in that figure, which corresponds to a decrease slower than [Var(δK)]−1/2,
is qualitatively explained by an analysis of equation (10): one can easily check that, because
of the properties of J 2

n (x), the integral grows with the variance much more slowly than the
prefactor decay. On the other hand, the dependence of the coefficients on N, rooted not only
in the stochastic variation of ηN , but also in the deterministic drift of zN , presents a more
complex appearance. An analytical description of this dependence can be given at large times.
In this limit, taking into account the asymptotic behaviour of the Bessel functions, one obtains
J 2
n (zN) ∼ N−1 cos2(zN − nπ/2 − π/4) for the deterministic system and

〈
J 2
n (ηN)

〉
f

∼ N−1

for its stochastic counterpart. The persistence in the random dynamics of part of the
deterministic functional form can be understood: the mean value of ηN grows with N faster
than its stochastic dispersion (zN and the variance both increase linearly); therefore, at large
N, J 2

n (ηN) is always inside its asymptotic regime [17]. The oscillations, which are the
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Figure 5. The survival probability, P (N), versus the number of kicks for white noise with
Var(δK) = 1 (solid line). The dashed line corresponds to the noiseless system. The inset shows a
logarithmic plot of the noisy asymptotic regime. K̄ = 1 and ν0 = 0.

signature of the residual peak structure, are washed out by the averaging in
〈
J 2
n (ηN)

〉
f

; the

dependence on N−1 remains.
The above argument explains, in particular, the behaviour of the ‘survival probability’,

P(N) ≡ 〈|〈ψ0(φ)ψN(φ)〉|2〉f = 〈
J 2

0 (ηN)
〉
f

, which decays asN−1 at large times, as illustrated
in figure 5. There it is shown that, after an initial transient in which there is a small difference
between the random and the noiseless functions, the oscillations decay and vanish much faster
than the final N−1 decrease. In order to isolate the effects specific to noise, we have taken
K̄ = 0 (as K can be negative, this case corresponds in fact to a mixture of amplitude and phase
noises). Since zN = 0, a purely diffusive spreading takes place; the survival probability being
given by

〈
J 2

0 (ηN)
〉
f

=
∞∑
p=0

(
(2p − 1)!!

p!

)2
(−1)

p!

p [
Var(δK)N

2k̄2

]p
(11)

which corresponds to exponential decay only for small values of Var(δK)N/2k̄2. Note that,
in this case, there is a common dependence on Var(δK) and N, as opposed to what is found for
zN �= 0. At this point, it is worth recalling that nonexponential decay has been found to emerge
in different contexts; moreover, the potential use of this property in the implementation of the
quantum Zeno effect has been widely analysed (see for instance [16] and references therein
for a description of practical realizations of the effect).

(b) For ν0 �= 0,−1/2, the numerical results show that, as predicted from the diffusive
growth of the energy, E(f ) = 1

4 Var(δK)N , noise gradually destroys the ‘localization’ found
in the deterministic system (see figures 3(c) and (d ). As the spreading progresses the
nonexponential form of the distribution persists, as can be anticipated from the robustness
of the functional form,

〈∣∣a(N)n

∣∣2〉
f

= 〈
J 2
n−n0

(ηN)
〉
f

.
We emphasize that, in the stochastic system, as in its deterministic counterpart, the

momentum distribution has a discrete character since only components with ρ = (n + ν0)k̄
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are allowed. This ‘momentum ladder’ structure is rooted in the spatial periodicity of the
potential, which is preserved by amplitude noise. It is also noticeable how, despite the
time-increasing variance, the deterministic features are relatively robust, large times and/or
large noise intensities being needed to observe their complete disappearance. Here, it is
interesting to comment on some general considerations which allow us to anticipate the more
destructive effect of other decohering mechanisms on the QR. Namely, the suppression of
BM by spontaneous emission can be predicted: the transfer of a uniformly distributed random
momentum at each spontaneous emission event makes ineffective the initial preparation needed
for the appearance of BM (see [13] for a Monte Carlo simulation of spontaneous emission in
the regime of dynamical localization). This is supported by the fact that a random choice of
ν0, i.e. a random initial condition, leads to a purely linear growth of the total mean energy.
Furthermore, as BM is rooted in the nondispersive evolution between kicks allowed by the
QR condition, its destruction by fluctuations in the kicking period, which prevent the exact
fulfilment of this condition, can be anticipated.

4. Results for a Guassian initial distribution

The results presented up to now are strictly valid for a plane-wave initial state, ψ0(φ) =
exp[i(n0 + ν0)φ]. Let us now discuss their generalization to more realistic states. In the
experiments of [3], where the quantum resonances were observed, the initial sample of
atoms consisted of an ensemble distributed continuously in momentum. Following the
theoretical analysis that explained the results of these experiments, we consider now that
the initial state corresponds to a statistical mixture of plane-wave states with a Gaussian
momentum distribution. Specifically, we assume that the probability of having a momentum
ρ0 at t = 0 is F0(ρ0) = A exp[−(ρ0 − ρc)

2/2σ 2], where σ is the initial width of
the distribution, ρc is the central momentum and A is a normalization constant. It is
straightforwardly shown that, in the absence of noise, the distribution after N kicks is given
by FN(ρ) = A

∑
m exp[−(k̄(m + ν) − ρc)

2/2σ 2]J 2
n−m

(
K̄

k̄

sinNβ
sinβ

)
, where ρ = (n + ν)k̄ and

β ≡ k̄ν/2. The effect of amplitude noise is readily evaluated through a direct application of
the methodology previously presented. For generic noise, the momentum distribution reads

〈FN(ρ)〉f = A
∑
m

exp[−(k̄(m + ν)− ρc)
2/2σ 2]

〈
J 2
n−m

(
η
(ν)
N

)〉
f

(12)

where η(ν)N is obtained replacing β0 by β, and zN by z(ν)N ≡ K̄

k̄

sinNβ
sin β , in equation (9). It is also

direct to generalize our previous results for the energy. In particular, in the case of Gaussian
white noise, we obtain

〈〈E(N)〉〉f = 〈E(0)〉 +A
∫ (

K̄

2

sinNβ0

sin β0

)2

exp[−(ρ0 − ρc)
2/2σ 2] dρ0 +

1

4
Var(δK)N

(13)

where 〈E(0)〉 ≡ A
∫

dρ0
ρ2

0
2 exp[−(ρ0 − ρc)

2/2σ 2] is the initial mean energy, the second term
is the deterministic increment and the third term is the diffusive growth. Note that in the limit
σ → 0, the results for a plane-wave initial state are consistently recovered. From the above
expression for the mean energy, it is evident that the conditions for the detection of ballistic
growth are not more demanding in the noisy system than in its deterministic counterpart,
where the effect has indeed been detected. In fact, in both cases, BM can be observed for an
initial distribution conveniently centred at a momentum ρc = (nc + νc)k̄ with νc = 0,−1/2,
and, importantly, with a sufficiently small initial width σ . Here, one should take into account
that it is the central area of the distribution that contributes to the effect: BM is observed not
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only for a plane wave with ν0 = 0,−1/2, but also, at small times, for plane-wave initial states
in the limit ν0 → 0,−1/2. The same arguments can be applied to discuss the feasibility of
detecting the features specific to coloured noise, which were shown to depend on the initial
condition. Again, it is the magnitude of the statistical weight of the central area that determines
the appearance of an effect associated with a specific value of ρc in the average behaviour
of the distribution. Hence, we conclude that our findings for a plane-wave initial state, in
particular, the persistence of quadratic growth in the stochastic system and effects due to noise
colour, can also be observed when a statistical mixture with a sufficiently narrow momentum
distribution is initially prepared; furthermore, they can be tested under working conditions
similar to those corresponding to previous experiments on quantum resonances.

The relevance of our analysis to the applicability of the QR in schemes of coherent
momentum enhancement must be remarked. The use of BM to coherently increase the
momentum, apart from being limited by the nonuniform character of the acceleration in this
regime, can be significantly restricted by the time-increasing destructive effect of amplitude
noise on the coherent evolution. It is worth mentioning recent work where related issues
have been tackled [22–26]. The results of [22] for a similar realization of the kicked rotor
are particularly interesting; they show that a quite uniform acceleration can be achieved by
orienting the standing wave in the gravity direction and working in accelerator mode regimes.

5. Concluding remarks

In summary, we have presented exact analytical results for the effect of amplitude noise on
the δ-kicked rotor at QR. Noise has been shown to add a time growth to the deterministic
energy and to induce a time increasing spreading in the momentum distribution. Although the
ballistic peaks, characteristic of the noiseless distribution for particular initial states, broaden
and eventually vanish, the associated BM persists; moreover, the ‘survival probability’ decays
asN−1 at large times. On the other hand, the nonexponentially ‘localized’ distribution detected
in the atomic realization of the model spreads gradually. Specific to white noise is a linear
growth of energy; for coloured noise, a nonlinear initial transient and an asymptotic linear
increase, the rate depending on the initial state and on the correlation time, are found. The
generalization of these conclusions, which are strictly valid for a plane-wave initial state, to
realistic states corresponding to the atom optics realization of the model has been discussed.
An experimental test of our predictions seems feasible under standard working conditions.
Finally, we remark that, apart from describing essential aspects of the experimental realization
of the model, the study provides new elements to the analysis of decoherence: we have
shown that nontrivial effects such as the persistence of intrinsically quantum properties in
the stochastic dynamics or the selective efficiency of different decohering mechanisms in the
destruction of quantum features can be tested on this ground.
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